МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ СЕВЕРО-КАВКАЗСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)

Кафедра «Химия и промышленная биотехнология»

Проректор по учебной работе и качеству образования /Г.В. Станкевич / 2022 г.

Программа

вступительных испытаний по химии для поступления в СКГМИ (ГТУ)

Составители: д.т.н., проф. Бирагова Н. Ф. к.т.н., доц. Алиев К.Р.

Владикавказ 2022/2023

Программа вступительных испытаний по химии

Программа по химии для поступающих в СКГМИ (ГТУ) состоит из двух разделов. В первом разделе представлены основные теоретические понятия химии, которыми должен владеть абитуриент с тем, чтобы уметь обосновывать химические и физические свойства веществ, перечисленных во втором разделе, посвященном элементам и их соединениям.

Экзаменационный билет может содержать до 10 заданий с дифференцированной оценкой, охватывающих все разделы программы для поступающих. На экзамене можно пользоваться микрокалькуляторами и справочными таблицами, такими как "Периодическая система химических элементов", "Растворимость оснований, кислот и солей в воде", "Ряд стандартных электродных потенциалов".

Часть I. Основы теоретической химии

Предмет химии. Место химии в естествознании. Масса и энергия. Основные понятия химии. Вещество. Молекула. Атом. Электрон. Ион. Химический элемент. Химическая формула. Относительная атомная и молекулярная масса. Моль. Молярная масса.

Химические превращения. Закон сохранения массы и энергии. Закон постоянства состава. Стехиометрия.

Строение атома. Атомное ядро. Изотопы.

Двойственная природа электрона. Строение электронных оболочек атомов. Квантовые числа. Атомные орбитали. Электронные конфигурации атомов в основном и возбужденном состояниях, принцип Паули, правило Хунда.

Периодический закон Д.И.Менделеева и его обоснование с точки зрения электронного строения атомов. Периодическая система элементов.

Химическая связь. Типы химических связей: ковалентная, ионная, металлическая, водородная. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Энергия связи. Потенциал ионизации, сродство к электрону, электроотрицательность. Кратные связи.

Валентность и степень окисления. Структурные формулы. Изомерия. Виды изомерии, структурная и пространственная изомерия.

Агрегатные состояния вещества и переходы между ними в зависимости от температуры и давления. Газы. Газовые законы. Уравнение Клайперона-Менделеева. Закон Авогадро, молярный объем. Жидкости. Ассоциация молекул в жидкостях. Твердые тела.

Классификация и номенклатура химических веществ. Индивидуальные вещества, смеси, растворы. Простые вещества, аллотропия. Металлы и неметаллы. Сложные вещества. Основные классы неорганических веществ: оксиды, основания, кислоты, соли. Комплексные соединения. Основные классы органических веществ: углеводороды, галоген-, кислород-И Карбоазотосодержащие вещества. И гетероциклы. Полимеры И макромолекулы.

Химические реакции и их классификация. Окислительновосстановительные реакции.

Тепловые эффекты химических реакций. Термохимические уравнения. Теплота образования химических соединений. Закон Гесса и его следствия.

Скорость химической реакции. Представление о механизмах химических реакций. Элементарная стадия реакции. Гомогенные и гетерогенные реакции. Зависимость скорости гомогенных реакций от концентрации (закон действующих масс). Константа скорости химической реакции, ее зависимость от температуры. Энергия активации.

Явление катализа. Катализаторы. Примеры каталитических процессов. Представление о механизмах гомогенного и гетерогенного катализа.

Обратимые реакции. Химическое равновесие. Константа равновесия, степень превращения. Смещение химического равновесия под действием температуры и давления (концентрации). Принцип Ле Шателье.

Дисперсные системы. Коллоидные системы. Растворы. Механизм образования растворов. Растворимость веществ и ее зависимость от температуры и природы растворителя. Способы выражения концентрации растворов: массовая

доля, мольная доля, молярная концентрация, объемная доля. Отличие физических свойств раствора от свойств растворителя. Твердые растворы. Сплавы.

Электролиты. Растворы электролитов. Электролитическая диссоциация кислот, оснований и солей. Кислотно-основные взаимодействия в растворах. Амфотерность. Константа диссоциации. Степень диссоциации. Ионное произведение воды. Водородный показатель. Гидролиз солей. Равновесие между ионами в растворе и твердой фазой. Произведение растворимости. Константа устойчивости комплексов. Ионные уравнения реакций.

Окислительно-восстановительные реакции в растворах. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Стандартные потенциалы окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Электролиз растворов и расплавов.

Часть II. Элементы и их соединения.

Неорганическая химия

Абитуриенты должны на основании Периодического закона давать сравнительную характеристику элементов в группах и периодах. Характеристика элементов включает: электронные конфигурации атома; возможные валентности и степени окисления элемента в соединениях; формы простых веществ и физические основные соединений, ИХ И химические свойства, ТИПЫ лабораторные и промышленные способы получения; распространенность элемента и его соединений в природе, практическое значение и области применения соединений. При описании химических свойств должны быть отражены реакции с участием неорганических и органических соединений (кислотно-основные и окислительно-восстановительные превращения), а также качественные реакции.

Водород. Изотопы водорода. Соединения водорода с металлами и неметаллами. Вода. Пероксид водорода.

Галогены. Галогеноводороды. Галогениды. Кислородсодержащие соединения хлора.

Кислород. Оксиды и пероксиды. Озон.

Сера. Сероводород, сульфиды, полисульфиды. Оксиды серы (IV) и (VI). Сернистая и серная кислоты и их соли.

Азот. Аммиак, соли аммония. Оксиды азота. Азотистая и азотная кислоты и их соли.

Фосфор. Фосфин, фосфиды. Оксиды фосфора (III) и (V). Галогениды фосфора. Орто-, мета- и дифосфорная кислоты. Ортофосфаты.

Углерод. Изотопы углерода. Простейшие углеводороды: метан, этилен, ацетилен. Карбиды кальция, алюминия. Оксиды углерода (II) и (IV). Угольная кислота и ее соли.

Кремний. Силан. Силицид магния. Оксид кремния (IV). Кремнивые кислоты, силикаты.

Благородные газы. Примеры соединений криптона и ксенона.

Щелочные металлы. Оксиды, пероксиды, гидроксиды и соли щелочных металлов.

Щелочноземельные металлы, бериллий, магний: их оксиды, гидроксиды и соли.

Алюминий. Оксид, гидроксид и соли алюминия.

Медь, серебро. Оксиды меди (I) и (II). Гидрооксид меди (II). Соли серебра и меди.

Цинк, ртуть. Оксиды цинка и ртути. Гидроксид цинка и его соли.

Хром. Оксиды хрома (II), (III) и (VI). Гидрооксиды и соли хрома (II) и (III). Хроматы и дихроматы (VI). Комплексные соединения хрома (III).

Марганец. Оксиды марганца (II) и (IV). Гидрооксид и соли марганца (II). Манганат и перманганат калия.

Железо, кобальт, никель. Оксиды железа (II), (II)-(III) и (III). Гидроксиды и соли железа (II) и (III).

Органическая химия

Характеристика каждого класса органических соединений включает: особенности электронного и пространственного строения соединений данного класса, закономерности изменения физических и химических свойств в гомологическом ряду, номенклатуру, виды изомерии, основные типы химических реакций и их механизмы. Характеристика конкретных соединений включает физические и химические свойства, лабораторные и промышленные способы получения, области применения

Функциональная группа. Гомологические ряды. Изомерия: структурная и пространственная. Представление об оптической изомерии. Взаимное влияние атомов в молекуле. Классификация органических реакций по механизму и заряду активных частиц.

Алканы и циклоалканы.

Алкены. Сопряженные диены.

Алкины. Кислотные свойства алкинов.

Ароматические углеводороды (арены). Бензол и его гомологи. Стирол. Реакции ароматической системы и углеводородного радикала. Ориентирующее действие заместителей в бензольном кольце (ориентанты I и II рода).

Спирты простые и многоатомные. Фенолы. Простые эфиры.

Карбонильные соединения: альдегиды и кетоны. Предельные, непредельные и ароматические альдегиды.

Карбоновые кислоты. Предельные, непредельные и ароматические кислоты. Производные карбоновых кислот: соли, сложные эфиры. Жиры.

Амины. Алифатические и ароматические амины. Первичные, вторичные и третичные амины. Основность аминов.

Пептиды. Представление о структуре белков.

Углеводы. Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Циклические формы моносахаридов. Понятие о пространственных изомерах углеводов. Дисахариды: целлобиоза, мальтоза, сахароза. Полисахариды: крахмал, целлюлоза. Пиррол. Пиридин. Пиримидиновые и пуриновые основания, входящие в состав нуклеиновых кислот. Представление о структуре нуклеиновых кислот.

Реакции полимеризации и поликонденсации. Отдельные типы высокомолекулярных соединений: полиэтилен, полипропилен, полистирол, поливинилхлорид, каучуки, сополимеры, фенол-формальдегидные смолы, искусственные и синтетические волокна.

Критерии оценивания вступительных испытаний по химии.

Вступительный экзамен по химии проводится в письменной форме. Результаты сдачи вступительного экзамена по химии оцениваются по 100-бальной системе. Минимальный уровень знаний при сдаче вступительного экзамена соответствует 40 баллам. В экзаменационном билете содержится 10 вопросов, охватывающих весь основной курс химии школьной программы. Ответы на первый и второй вопросы теста оцениваются в 5 баллов. Ответы на вопросы 3-8 оцениваются по 10 баллов за каждый правильный ответ. Под номерами 9 и 10 - расчётные задачи по органической и неорганической химии, которые оцениваются по 15 баллов.

Шкала перевода в пятибалльную систему оценки

Отметка «5» ставится, если абитуриент набрал свыше 75баллов.

Отметка «4» ставится, если абитуриент набрал 60-74 баллов.

Отметка «3» ставится, если абитуриент набрал 40-73 баллов.

Отметка «2» ставится, если абитуриент набрал меньше 40 баллов.

Перечень рекомендуемой литературы:

- 1. Хомченко Г.П. Пособие по химии для поступающих в вузы. издание М.: Издательство Новая волна, 2002. 399с.
- 2. Егоров А.С., Иванченко Н.М., Шацкая К.П. Репетитор по химии // Ростовна-Дону: Изд-во «Феникс», 2021г. -763с.
- 3. Кузьменко Н.Е., Еремин В.В. 2500 задач по химии с решениями для поступающих в вузы . 3-е изд.-М.// 3-е изд.-Изд-во: Оникс 21 век. Мир и образование, 2007г, 640с.
- 4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих